lunes, 1 de octubre de 2012

Els patrons de temps i el problema històric de la determinació de la longitud de l'observador en navegació

Els patrons de temps astronòmic Per temps sideral (temps "de les estrelles") entenem l'interval de temps entre dos passos successius d'un estel pel meridià local i, en particular, anomenem temps sideri a la mesura del temps basada en el patró de temps que es defineix com l'interval entre dos passos successius del punt Àries per un mateix meridià (dia sideri). Per altra banda, en l'activitat quotidiana, el patró de temps més natural és el basat en el temps solar vertader o temps sinòdic que, tot ser més apropiat per estar basat en els intervals de llum i foscor (dia i nit) en el lloc de la Terra on ens trobem és, per contra, menys regular que el temps sideral. Aquesta irregularitat del patró de Sol vertader es deguda a dues causes: d'una banda, com que l'òrbita de la Terra no és una circumferència sinó una el·lipse i, per tant, la seva velocitat no és la mateixa en tots els punts de l'òrbita, el moviment aparent del Sol que recorre l'eclíptica tampoc es produeix a velocitat constant; per altra banda, atenent que el moviment aparent del Sol no segueix l'equador celeste (sinó l'eclíptica), l'angle horari del Sol, és a dir, el temps mesurat mitjançant la variació d'aquesta quantitat, no varia a un ritme constant. És per això que el patró amb què s'efectuen els càlculs d'astronomia de posició a la Terra no és, doncs, el patró de Sol vertader - irregular de mena, com ja s'ha explicat -, ans el patró anomenat Sol mitjà, el qual és refereix a un Sol imaginari que es mogués sempre sobre l'equador celeste a una velocitat constant (la variació de l'angle horari d'aquest sol imaginari sobre l'equador és constant) i té - per natural requeriment - el mateix període que el del Sol vertader. Aquest patró de Sol mitjà és el del dia solar mitjà: l'interval de temps entre dos passos successius del Sol mitjà per un mateix meridià, un patró de prou regular que, en particular, anomenem de temps universal (TU) si, per conveni, mesurem el temps situats en el meridià del Royal Observatory de Greenwich (GB). La diferència entre el temps del Sol vertader i el temps del Sol mitjà és igual a l'equació del temps, quantitat que es pot trobar en els anuaris astronòmics i que, per exemple, cal consultar necessàriament si volem construir i ubicar un rellotge de Sol.
(cronòmetre marí. Procedència de la imatge: http://www.iag.csic.es/museo/tipo.htm)
El temps sideral, no coincideix exactament amb el temps sideri, i molt menys, és clar, amb el temps universal (TU). La raó d'aquest escrit, de fet, és reflexionar sobre el perquè el pas d'una estació a l'altra no es regular i, per tant, parlar concretament sobre el temps sideri, el patró de temps relacionat amb el moviment aparent/relatiu del punt Àries a l'esfera celeste. Com explicarem a continuació, en navegació, el problema del temps està relacionat íntimament amb el problema de la determinació de la longitud: poder mesurar el temps astronòmic referit a un lloc convingut en una posició determinada permet deduir-ne la seva longitud. La determinació de la latitud no va presentar mai tantes dificultats com el de determinar la longitud. Abans que John Harrison aportés una solució pràctica i prou precisa que passava per dur a bord un cronòmetre fiable i precís amb l'hora del meridià de referència, hom intentà resoldre el problema de trobar la longitud [mesurar el temps astronòmic referit a un meridià de referència] fent observacions astronòmiques - difícils en navegació -, concretament, mesurant distància entre la Lluna i alguna estrella o planeta.

John Harrison, gravat (Royal Observatory) de l'artista Peter Joseph Tassaert, datat el 1768, i extret, probablement, del retrat preliminar pintant a l'oli per Thomas King

Però, tal i com ja hem avançat, per als navegants, el problema de determinar la longitud d'un punt de la Terra desconegut on es trobessin - d'enorme importància pel que fa a la seguretat - no va ser resolt d'una forma eficaç fins que John Harrison, fuster i rellotger, d'una excepcional habilitat i inventiva per a la la mecànica, va construir i posar a punt el primer cronòmetre marí fiable el 1759. John Harrison va inventar i construir quatre cronòmetres marins (des de l'any 1714 fins el 1759) ; els darrers, amb l'ajut del seu fill William Harrison. Eren instruments precisos, robustos i fiables. La seva maquinària no requeria lubricació i en la seves peces es feia ús d'una combinació de metalls que compensava les dilatacions i contraccions degudes als canvis de temperatura [làmines bimetàliques (de llautó i acer) d'efectes contraposats], a la vegada que emprava determinades fustes resinoses per a algunes peces de transmissió de la maquinària que permetien prescindir de la delicada operació de greixar la delicada maquinària, amb tots els inconvenients que això havia comportat amb anterioritat. Per altra banda el sistema per emmagatzemar l'energia mecànica i el sistema de peces basculants permetia confiar amb el cronòmetre en situacions de mala mar, amb molt de moviment. El cronòmetre més pesant de la sèrie feia gairebé 40 kg, i el més lleuger, poc més d'un quilogram. Amb la seva contribució es va fer mereixedor del premi que el rei Carles II havia ofert a qui resolgués d'una manera pràctica i precisa el problema de la determinació de la longitud (o l'hora del meridià de referència) en navegació, Harrison fou recompensat amb aquest premi l'any 1773. Els tres primers similars en concepció: l'H1 (el més gran i pesant), l'H2, l'H3 i, finalment, el quart i últim, l'H4, molt més petit i lleuger que els altres tres però igualment fiable. L'H4 tenia un decímetre de diàmetre, aproximadament, anava muntat sobre uns balancins i disposava d'una molla bimètalica que li proporcionava l'energia elàstica necessària per mantenir-lo en funcionament. Amb l'H4 es va fer la primera prova en navegació oceànica el 1762, en un viatge entre Anglaterra i Jamaica (Carib). D'acord amb les anotacions del viatge, l'error acumulat va ser tan sols de 5 segons, la qual cosa suposava un error de navegació en longitud de 1.25 minuts d'arc de meridià. I, quan al punt de recalada, un cercle d'error de 30 milles nàutiques de radi. Fou tot un èxit. James Cooke emprà també amb gran èxit un cronòmetre construït per Larcum Kendall, el K1 (una còpia de l'H4 de Harrison), en el seu segon viatge en el HMS Resolution que, després de tres anys d'haver començat, finalitzà el 1776. Després de molts anys de patir una competència molt agressiva i no exempta de joc brut per part d'alguns personatges clau, defensors mètode rival (el de les distàncies lunars) i que ocupaven llocs clau en la presa de decisions en aquests afers, John Harrison, amb l'ajut del seu fill William, va poder acreditar ser mereixedor, amb tota justicia, del premi que havia establert la corona britànica per a la solució del problema de la longitud. Fins a final de segle XIX i malgrat disposar ja de cronòmetres marins - apareguts de la mà de John Harrison i els seus successors -, els pilots i capitans continuaven confiant molt en el mètode de les distàncies lunars, sobre tot, perquè en aquells temps encara no hi havia cap sistema per sincronitzar de forma remota els cronòmetres - com es fa actualment amb els senyals horaris de radio -; en aquell temps, l'única manera de fer-ho consistia a calcular l'hora TU vertadera a partir de tres lectures de cronòmetre i una distància lunar - a més a més de poder obtenir també la longitud de l'observació, per descomptat - podent posar així a hora el cronòmetre (determinar-ne l'estat absolut en termes de navegació). Per això, calia una bona preparació en navegació astronòmica per part de pilots i capitans i, no cal dir-ho, efectuar unes mesures prou precises, tant de la distància entre la Lluna i un altre astre, sobre el cercle màxim de l'esfera celeste que els uneix, així com de les altures: de la Lluna i de l'astre. Recordem que el mètode de les distàncies lunars permet obtenir l'hora TU amb una precisió màxima de 2 min. Per determinar la longitud per observació dels astres calia fer ús d'instruments adequats: els octants i sextants, i per a les observacions en terra, altres de més precisos, com ara el cercle de reflexió o cercle de Borda, ja que amb els sextants i octants no s'obtenia tan bon resultat. Recordem que, per contra, l'obtenció de la latitud ja feia segles que s'havia resolt satisfactòriment a partir, és clar, d'observacions astronòmiques. La simplicitat, la precisió i eficàcia de tenir a bord un rellotge, adaptat a la navegació, que donés l'hora del meridià de referència, reproduint el pas del temps sense problemes mecànics i per tant amb la regularitat i precisió necessàries, acabà imposant-se. Els rellotges, que s'havien fet servir amb anterioritat a l'H1 s'endarrerien o s'avançaven, degut a la dilatació i la contracció tèrmica, la corrosió de les seves peces, les quals, a més, també requerien lubricació. Quant al meridià de referència, val a dir que no era pas el mateix a tot el Món. En particular, els britànics – des de l'any 1765 – l'establiren de tal manera que aquest correspongués a la longitud de l'observatori de Greenwich, a Londres (Royal Observatory). Els espanyols empraven llavors els seu propis meridià de referència, el que passava per Real Observatorio en San Fernando, Cadiz, fundat per l'astrònom Jorge Juan el 1753. Els francesos també tenien el seu propi meridià de referència. No va ser fins l'u de gener de 1885 que el meridià de Greenwich fou el de referència internacional, fruit de l'acord de els països. L'objectiu de la institució era publicar periòdicament les efemèrides i dades astronòmiques referents als planetes, el Sol i la Lluna, així com les dels estels visibles (almanacs) per tal de fer possibles els càlculs de Navegació Astronòmica necessaris per situar-se en el mar. En aquell moment, els cronòmetres marins eren molt cars. No pas tots els capitans i oficials de derrota es podien permetre tenir-ne un o dos (a bord hom en duia més d'un, per tal de fer les correccions necessàries) i és per això que el mètode dit de les distàncies lunars fou emprat alternativament a la simple lectura del cronòmetre. No obstant això, l'ús del cronòmetre acabà imposant-se donats els seus avantatges en relació als mètodes d'observació directa basats en distàncies entre astres, i posteriors càlculs els quals, per cert, no eren pas senzills, considerant, a més, que en aquells temps que no existien les calculadores o els ordinadors, per bé que hom tenia, això sí, l'ajut de taules trigonomètriques i de logaritmes, així com d'altres específiques per a la navegació. El quart cronòmetre de Harrison, fou posat a prova el 1762, en la travessia de l'Atlàntic. El viatge va durar tres mesos i tan sols es va observar un endarreriment de 5 segons. Després de sis mesos, havent tornat el vaixell al port d'origen, l'error entre la partida i la tornada fou de dos minuts. Robert Cook, va fer servir els cronòmetres des del seu primer viatge (1768-1771) de prospecció topogràfica i de descobriment. Definitivament, la solució del cronòmetre marí, inventat per John Harrison, s'havia imposat sobre el mètode de les distàncies entre astres (el de les distàncies lunars, com a competidor, en concret). Com és ben sabut, disposar del temps en el meridià de referència, el temps TU amb la precisió més gran que sigui possible és fonamental per treballar amb rectes i cercles d'altura. El mètode de situació per intersecció de rectes d'altura, a partir de les altures dels astres, l'hora TU i una posició estimada que s'ensenya a les escoles de nàutica es deu al Capità Thomas Hubbard Sumner, el qual publicà l'any 1843 en un treball titulat A New and Accurate Method of Finding a Ship’s Position at Sea. És interessant comentar també que trobar la intersecció dels cercles d'altura, directament, permet prescindir de la situació estimada per determinar la situació vertadera, per bé que els càlculs de trigonometria esfèrica es compliquen una mica, no poden escapar-nos-en mitjançant mètodes gràfics aproximats. Actualment, però, amb l'ús d'una simple calculadora programable es perfectament viable i precís.

No hay comentarios:

Publicar un comentario