Mostrando entradas con la etiqueta matriz inversa. Mostrar todas las entradas
Mostrando entradas con la etiqueta matriz inversa. Mostrar todas las entradas

jueves, 14 de agosto de 2025

Cálculo de la matriz inversa de una matriz regular mediante el método de reducción

A modo de ejercicio, voy a calcular la matriz inversa de $A=\begin{pmatrix}i&1\\1&i\end{pmatrix}$, cuyos elementos pertenecen al cuerpo de los números complejos

Voy a utilizar el método de reducción:
$$\left(\begin{array}{cc|cc}
i & 1 & 1 & 0 \\
1 & i & 0 & 1 \\
\end{array}\right) $$ Multiplicando por $i$ los elementos de la primera fila y sumando la fila resultante a los elementos de la segunda obtenemos: $$\left(\begin{array}{cc|cc}
i & 1 & 1 & 0 \\
0 & 2i & i & 1 \\
\end{array}\right) $$ Ahora, multipliquemos por $\dfrac{1}{2}\,i$ los elementos de la segunda fila y sumemos a los de la primera: $$\left(\begin{array}{cc|cc}
i & 0 & \frac{1}{2} & \frac{1}{2}\,i \\
0 & 2i & i & 1 \\
\end{array}\right) $$ Multiplicando lo0s elementos de la primera fila por $-i$: $$\left(\begin{array}{cc|cc}
1 & 0 & -\frac{1}{2}\,i & \frac{1}{2} \\
0 & 2i & i & 1 \\
\end{array}\right) $$ Y, finalmente, multipliquemos los elementos de la segunda fila por $-\frac{1}{2}\,i$: $$\left(\begin{array}{cc|cc}
1 & 0 & -\frac{1}{2}\,i & \frac{1}{2} \\
0 & 1 & \frac{1}{2} & -\frac{1}{2}\,i \\
\end{array}\right) $$ Así pues, $$A^{-1}=\begin{pmatrix}-\frac{1}{2}\,i & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2}\,i \end{pmatrix}=\dfrac{1}{2}\, \begin{pmatrix}-i & 1 \\ 1 & -i \end{pmatrix}$$

-oOo-

Nota:
Un método alternativo es el de la matriz de los cofactores: $A^{-1}=\dfrac{C^t}{\text{det}(A)}$ donde $C=[c_{ij}]_{n\times n}:=[(-1)^{i+j}\,\mathcal{A}_{ij}]_{n \times n}$ siendo $\mathcal{A}$ la matriz de los adjuntos asociada a $A$

Así, en el caso que nos ocupa, $C=\begin{pmatrix}(-1)^{1+1}\,\text{det}(a_{22})&(-1)^{1+2}\,\text{det}(a_{21}) \\ (-1)^{2+1}\,\text{det}(a_{12})&(-1)^{2+2}\,\text{det}(a_{11}) \end{pmatrix}=\begin{pmatrix}i&-1\\-1&i\end{pmatrix}$, con lo cual $C^t=\begin{pmatrix}i&-1\\-1&i\end{pmatrix}$; por otra parte, $\det{A}=\begin{vmatrix}i&1\\1&i\end{vmatrix}=i^2-1^2=-1-1=-2$, luego $A^{-1}=\dfrac{1}{-2}\,\begin{pmatrix}i&-1\\-1&i\end{pmatrix}=\dfrac{1}{2}\,\begin{pmatrix}-i&1\\1&-i\end{pmatrix}$, tal y como ya hemos calculado antes por el método de reducción.

$\diamond$