Processing math: 100%

miércoles, 1 de febrero de 2017

Una aplicación de la desigualdad de Tchebychev

Teorema de Tchebychev:
  Sea X una variable aleatoria, con esperanza matemática y varianza finitas, entonces se cumple que, para un número real k\succ 0, P\{\left|X-E[X]\right|\ge k \}\le \dfrac{\sigma^2(X)}{k^2}

Ejemplo de aplicación:
En una sesión de cine de verano al aire libre acude una media 1000 personas, con una desviación estándar de \sigma=20. ¿ Cuántas sillas son necesarias para que, con una probabilidad del 75\,\%, todos los espectadores puedan sentarse ?.

SOLUCIÓN. Del resultado expuesto, P\{\left|X-E[X]\right|\ge k \}\le \dfrac{\sigma^2(X)}{k^2} podemos escribir P\{\left|X-1000\right|\ge k \}\le \dfrac{20^2}{k^2} luego, por la propiedad del contrario, P\{\left|X-1000\right|\prec k \}\ge 1-\dfrac{20^2}{k^2} donde 1-\dfrac{20^2}{k^2}=0,75 y por tanto k=40 Así pues P\{\left|X-1000\right|\prec 40 \}\ge 0,75
Con lo cual \left|X-1000\right| \prec 40 \Leftrightarrow \left\{ \begin{matrix} x-100 \prec 40 \Rightarrow x \prec 1040 \\ y \\ -(x-100) \prec 40 \Rightarrow x \succ 960 \end{matrix}\right. \Leftrightarrow 960 \prec X \prec 1040

Referencias:
CUADRAS, C.M, Problemas de Probabilidad y Estadística ( Vol. 1 ), Ediciones PPU, Barcelona, 1990

No hay comentarios:

Publicar un comentario