Mostrando entradas con la etiqueta parámetro de evolución temporal. Mostrar todas las entradas
Mostrando entradas con la etiqueta parámetro de evolución temporal. Mostrar todas las entradas

miércoles, 20 de agosto de 2025

Curvatura y radio de curvatura en cada punto de una curva de $\mathbb{R}^3$

Consideremos una curva $\mathcal{C}$ en $\mathbb{R}^3$ en la que expresamos la posición de los puntos de la misma en función de un parámetro natural como es la longitud de arco $s$ -en física, el parámetro natural suele ser el tiempo-; $\vec{r(s)}=x(s)\,\hat{i}+y(s)\,\hat{j}+z(s)\,\hat{k}$ apunta pues a un punto genérico de la curva. Vamos a ver cómo expresar la curvatura y la torsión en un punto dado de dicha curva.

Manejaremos para ello las derivadas vectoriales $\dfrac{d\vec{r(s)}}{ds}=:\vec{\sigma}$ (vector tangente a la curva en el punto dado) y $\dfrac{d(\vec{\sigma(s)})}{ds}=\dfrac{d^2(\vec{r(s))}}{ds^2}$, y la necesidad de ello se verá enseguida.

Es claro que el vector $\dfrac{d(\vec{\sigma(s)})}{ds} \perp \vec{\sigma(s)}$ (vector tangente a la curva en el punto a considerar), por lo que esta segunda derivada de $\vec{r(s)}$, la entendemos como un vector proporcional al vector unitario normal a la curva en el punto dado, $\vec{n}$, y por tanto podemos escribir, $$\dfrac{d\vec{\sigma(s)}}{ds}=\mathcal{K(s)}\,\vec{n}$$ siendo por tanto $\mathcal{K(s)}=\left\|\dfrac{d\vec{\sigma(s)}}{ds}\right\|=\left\|\dfrac{d^2\vec{r(s)}}{ds^2}\right\| \quad (1)$

Es evidente que el ángulo formado entre los vectores de posición de dos puntos próximos $P$ y $P'$, $\Delta\,\varphi:=\measuredangle(\vec{r(s)}\,,\,\vec{r(s+\Delta\,s)})$ tiene que ver con lo que acabamos de escribir, y entenderemos por tanto como curvatura de la curva en el punto $P$ a la cantidad $$\displaystyle \mathcal{K}(s):=\lim_{\Delta\,s}\,\left| \dfrac{\Delta\,\varphi}{ds} \right|$$ y definimos el radio de curvatura como $$R(s):=\dfrac{1}{\mathcal{K}(s)}=\dfrac{1}{\left\|\dfrac{d^2\vec{r(s)}}{ds^2}\right\|}$$

Pues bien, de acuerdo con $(1)$, $$\mathcal{K}(s)=\sqrt{\left(\dfrac{d^2(x(s)) }{ds^2}\right)^2+\left(\dfrac{d^2(y(s)) }{ds^2}\right)^2+\left(\dfrac{d^2(z(s)) }{ds^2}\right)^2}$$ y por tanto $$R(s)=\dfrac{1}{\sqrt{\left(\dfrac{d^2(x(s)) }{ds^2}\right)^2+\left(\dfrac{d^2(y(s)) }{ds^2}\right)^2+\left(\dfrac{d^2(z(s)) }{ds^2}\right)^2}}$$ Nota:
En muchos cálculos suele aparecer también el cuadrado de la curvatura y el cuadrado del radio de curvatura, $$(\mathcal{K(s)})^2=\dfrac{1}{(R(s))^2}=\left(\dfrac{d^2(x(s)) }{ds^2}\right)^2+\left(\dfrac{d^2(y(s)) }{ds^2}\right)^2+\left(\dfrac{d^2(z(s)) }{ds^2}\right)^2$$ y $$ (R(s))^2=\dfrac{1}{\left(\dfrac{d^2(x(s)) }{ds^2}\right)^2+\left(\dfrac{d^2(y(s)) }{ds^2}\right)^2+\left(\dfrac{d^2(z(s)) }{ds^2}\right)^2}$$

-oOo-

Ya se ha comentado que en física, el parámetro usual es el tiempo, por lo que a menudo nos vemos en la necesidad de calcular la curvatura y el radio de curvatura a partir de la expresión de la curva en función del parámetro $t$ en lugar de $s$. Para ello, tengamos en cuenta que $$\dfrac{d\vec{r(s)}}{ds}=\dfrac{d\vec{r(s)}}{dt}\cdot \dfrac{dt}{ds}=\dfrac{d\vec{r(s)}}{dt}\cdot \dfrac{1}{\dfrac{ds}{dt}}$$ Por consiguiente, $$\dfrac{d^2\vec{r(s)}}{ds^2}=\dfrac{d}{ds}\,\left(\dfrac{d\vec{r(s)}}{dt}\right)\cdot \dfrac{1}{\dfrac{ds}{dt}}+\dfrac{d}{ds}\left( \dfrac{1}{\dfrac{ds}{dt}} \right) \cdot \dfrac{d\vec{r(s)}}{dt}$$ luego $$\dfrac{d^2\vec{r(s)}}{ds^2}=\dfrac{d}{ds}\,\left(\dfrac{d\vec{r(s)}}{dt}\right)\cdot \dfrac{1}{\dfrac{ds}{dt}}+(-1)\,\dfrac{\dfrac{d^2s}{dt^2}}{\left(\dfrac{ds}{dt}\right)^3}\cdot \dfrac{d\vec{r(s)}}{dt}$$ esto es $$\dfrac{d^2\vec{r(s)}}{ds^2}=\dfrac{\dfrac{d}{dt}\,\left(\dfrac{d\vec{r(s)}}{dt}\right)}{\dfrac{ds}{dt}} \cdot \dfrac{1}{\dfrac{ds}{dt}}+(-1)\,\dfrac{\dfrac{d^2s}{dt^2}}{\left(\dfrac{ds}{dt}\right)^3}\cdot \dfrac{d\vec{r(s)}}{dt}$$ con lo cual $$\dfrac{d^2\vec{r(s)}}{ds^2}=\dfrac{d^2\vec{r(s)}}{dt^2}\cdot \dfrac{1}{\left(\dfrac{ds}{dt}\right)^2}+(-1)\,\dfrac{\dfrac{d^2s}{dt^2}}{\left(\dfrac{ds}{dt}\right)^3}\cdot \dfrac{d\vec{r(s)}}{dt}$$

Recordemos que $\vec{r(t)}=(x(t),y(t),y(t))$, por tanto $\dfrac{d\vec{r(t)}}{dt}=(\dot{x}(t),\dot{y}(t),\dot{z}(t))$ y $\dfrac{d^2\vec{r(t)}}{dt^2}=(\ddot{x}(t),\ddot{y}(t),\ddot{z}(t))$ con lo cual podemos escribir el resultado de la forma, $$\dfrac{d^2\vec{r(s)}}{ds^2}=(\ddot{x}(t),\ddot{y}(t),\ddot{z}(t))\cdot \dfrac{1}{\left(\dfrac{ds}{dt}\right)^2}+(-1)\,\dfrac{\dfrac{d^2s}{dt^2}}{\left(\dfrac{ds}{dt}\right)^3}\cdot (\dot{x}(t),\dot{y}(t),\dot{z}(t))$$

De todo ello se acaba de deducir que $\mathcal{K}(t)=\dfrac{1}{R(t)}=\dfrac{\left\| \dfrac{d\vec{r}}{dt}\times \dfrac{d^2\vec{r}}{dt}\right\|}{\left( \left\| \dfrac{d\vec{r}}{dt}\right\|\right)^3}$ o si se prefiere utilizar la notación punto para la derivada vectorial, por comodidad: $\mathcal{K}(t)=\dfrac{1}{R(t)}=\dfrac{\left\| \dot{\vec{r}}(t) \times \ddot{\vec{r}}(t) \right\|}{\left( \left\| \dot{\vec{r}}(t) \right\| \right)^3}$

En particular, para curvas planas (en el plano $Oxy$) se tiene que $$\mathcal{K}=\dfrac{1}{R}=\dfrac{\left( (\dot{x})^2+(\dot{y})^2 \right)^\frac{3}{2}}{|\dot{x}\,\ddot{y}-\dot{y}\,\ddot{x}|}$$ y en el caso de que la curva venga expresada en forma explícita, $y=f(x)$, es fácil ver que $$\mathcal{K}=\dfrac{1}{R}=\dfrac{\left( 1+\left(\dfrac{f(x)}{dx}\right)^2\right)^\frac{3}{2}}{\left|\dfrac{d^2\,f(x)}{dx^2}\right|}$$ Nota: Recordemos que $\mathcal{K}$ se denomina curvatura y $R(t)$ radio de curvatura

$\diamond$