lunes, 27 de febrero de 2017

Cálculo con congruencias (clases de resto módulo m)

Notación:
Designaremos un número entero con una letra minúscula
Denotamos el máximo común divisor de $m$ y $n$ por $(m,n)$
Para expresar que $a$ divide a $b$ ( $b$ es múltiplo de $a$ ), escribiremos $a|b$ ( con lo cual notaremos $b=\dot{a}$ )

Lema (de Bézout)
Sea $d=(m,n)$, entonces se puede encontrar una combinación $a\,m+b\,n$ tal que $$d \,| \,(a\,m+b\,n)$$

Definición ( $a$ congruente con $a$ módulo $m$ )
Sea $m$ un entero no negativo. Decimos que $a=b\, \text{mod} \, m$ ( o también $a\equiv b\, (\text{mod} \, m)$ ) si y sólo si $m \,| \,(b-a)$

Pequeño teorema de Fermat
Sea $a$ un número entero no negativo y $p$ primo, tales que $a \neq \dot{p}$, entonces $a^{p-1} = 1 \;( \,\text{mod}\, p)$

Otra forma de enunciar el Pequeño Teorema de Fermat
Sea $a$ un número entero no negativo y $p$ primo, entonces $a^p = a \; ( \,\text{mod}\, p)$

miércoles, 1 de febrero de 2017

Una aplicación de la desigualdad de Tchebychev

Teorema de Tchebychev:
  Sea $X$ una variable aleatoria, con esperanza matemática y varianza finitas, entonces se cumple que, para un número real $k\succ 0$, $$P\{\left|X-E[X]\right|\ge k \}\le \dfrac{\sigma^2(X)}{k^2}$$

Ejemplo de aplicación:
En una sesión de cine de verano al aire libre acude una media $1000$ personas, con una desviación estándar de $\sigma=20$. ¿ Cuántas sillas son necesarias para que, con una probabilidad del $75\,\%$, todos los espectadores puedan sentarse ?.

SOLUCIÓN. Del resultado expuesto, $$P\{\left|X-E[X]\right|\ge k \}\le \dfrac{\sigma^2(X)}{k^2}$$ podemos escribir $$P\{\left|X-1000\right|\ge k \}\le \dfrac{20^2}{k^2}$$ luego, por la propiedad del contrario, $$P\{\left|X-1000\right|\prec k \}\ge 1-\dfrac{20^2}{k^2}$$ donde $$1-\dfrac{20^2}{k^2}=0,75$$ y por tanto $$k=40$$ Así pues $$P\{\left|X-1000\right|\prec 40 \}\ge 0,75$$
Con lo cual $$\left|X-1000\right| \prec 40 \Leftrightarrow \left\{ \begin{matrix} x-100 \prec 40 \Rightarrow x \prec 1040 \\ y \\ -(x-100) \prec 40 \Rightarrow x \succ 960 \end{matrix}\right. \Leftrightarrow 960 \prec X \prec 1040 $$

Referencias:
CUADRAS, C.M, Problemas de Probabilidad y Estadística ( Vol. 1 ), Ediciones PPU, Barcelona, 1990