ENUNCIADO. Calcúlese el volumen bajo la sperficie $f(x,y)=cos\,x \cdot \sin\,y$ sobre el cuadrado $\mathcal{D}=[0,\pi/2] \times [0,\pi/2]$
SOLUCIÓN. El volumen pedido es igual a
$\displaystyle \int\,\int_{\mathcal{D}}\,cos\,x\cdot \sin\,y\,dx\,dy=\int_{0}^{\pi/2}\left(\int_{0}^{\pi/2}\,\cos\,x\cdot \sin\,y \,dx \right) dy=$
$\displaystyle = \int_{0}^{\pi/2}\, \left( \sin\,y \cdot [\sin\,x]_{0}^{\pi/2} \right) \, dy = \int_{0}^{\pi/2}\, \left( \sin\,y \cdot ( \sin\,\pi/2 - \sin\,0 ) \right) \, dy = $
$ \displaystyle = \int_{0}^{\pi/2}\,\sin\,y \, dy = 1 \; (\text{unidades de longitud})^3$
$\square$
No hay comentarios:
Publicar un comentario