Loading [MathJax]/jax/output/HTML-CSS/autoload/mtable.js

domingo, 18 de diciembre de 2022

Uso de GNU Octave en la resolución (automática) de sistemas de ecuaciones lineales

Consideremos el siguiente sistema de ecuaciones lineales con tres incóngitas \left.\begin{matrix}x&+&y&+&z&=&1 \\ x&-&2y&+&3z&=&2 \\ x&+&3y&-&z&=&3\end{matrix}\right\}

que en forma matricial puede escribirse de la forma \begin{pmatrix} 1 & 1 & 1 \\ 1 & -2 & 3 \\ 1 & 3 & -1 \end{pmatrix}\,\begin{pmatrix} x \\ y \\ z\end{pmatrix}=\begin{pmatrix} 1 \\ 2 \\ 3\end{pmatrix}
La matriz (ampliada) de los coeficientes del sistema es A=\left(\begin{array}{ccc|c} 1&1&1&1 \\ 1&-2&3&2 \\ 1&3&-1&3 \end{array}\right)

Mediante el uso de la herramienta GNU Octave voy a resolver el sistema escalonando por Gauss la matriz ampliada, con pivotamiento por columnas, obteniendo así una matriz equivalente (en cuanto a la solución del sistema) de tipo triangular superior U tal que U^{\top}U=A. Con Octave es tan cómodo como hacer los siguiente:

  >> A=([1,1,1,1;1,-2,3,2;1,3,-1,3])
  >> U=rref(A)
  U =

   1   0   0   8
   0   1   0  -3
   0   0   1  -4 
  
esto es, la matriz \left(\begin{array}{ccc|c} 1&0&0&8 \\ 0&1&0&-3 \\ 0&0&1&-4 \end{array}\right)
Así, un sistema equivalente en solución es \left.\begin{matrix}x&&&&&=&8 \\ &&y&&&=&-3 \\ &&&&z&=&-4\end{matrix}\right\}
que nos da directamente la solución.

\diamond

-oOo-

Referencias

[1] John W. Eaton; David Bateman; Søren Hauberg; Rik Wehbring, Free Your Numbers (Manual de GNU Octave), https://www.gnu.org/software/octave/octave.pdf

No hay comentarios:

Publicar un comentario