viernes, 2 de junio de 2023

Un caso particular de matrices triangulares

El buen manejo de las propiedades de los determinantes facilita la resolución de muchos problemas, que, en un primer vistazo, parencen complicados. Ved, por ejemplo, el siguiente:

Sean $A_{n \times n}=\begin{pmatrix}0 & 1 & &&\\ & 0 & 1 && \\ && \ddots & \ddots && \\& && 0 & 1 \\ & && & 0 \end{pmatrix}$ (ceros en la diagonal principal y unos en la segunda diagonal superior, siendo nulos el resto de los elementos) y $B_{n \times n}=\begin{pmatrix}0 & & &&\\ 1 & 0 & && \\ & 1 & 0 & & \\ & & \ddots & \ddots & \\ \\ & & & 1 & 0 \end{pmatrix}$ (ceros en la diagonal principal y unos en la segunda diagonal inferior, siendo nulos el resto de los elmentos)

Demuéstrese que los determinantes $\text{det}(AB)$ y $\text{det}(BA)$ son ambos nulos.

-oOo-

Recordemos la siguiente propiedad de los determinantes: $\text{det}(AB)=\text{det}(A)\cdot \text{det}(B)=\text{det}(B)\cdot \text{det}(A)=\text{det}(BA)$ . Sabemos que el determinante de una matriz triangular, ya sea ésta triangular superior o bien triangular inferior, es igual al producto de los elementos de su diagonal principal; entonces, como $A$ es una matriz triangular superior, y $B$ es una matriz triangular inferior, ambas con ceros en la diagonal principal, se tiene que $\text{det}(A)=0$ y $\text{det}(B)=0$; por consiguiente, y teniendo en cuenta la propiedad referida acerca del determinante del producto de matrices, concluimos que $\text{det}(AB)=0\cdot 0=0$ y $\text{det}(BA)=0\cdot 0=0$. $\diamond$

No hay comentarios:

Publicar un comentario