Mostrando entradas con la etiqueta paradoja de la caja de Bertrand. Mostrar todas las entradas
Mostrando entradas con la etiqueta paradoja de la caja de Bertrand. Mostrar todas las entradas

jueves, 27 de julio de 2023

El problema de la caja de Bertrand

ENUNCIADO. Una urna $U_1$ contiene dos bolas blancas; otra urna $U_2$ contiene dos bolas negras; y una tercera urna $U_3$ contiene una bola blanca y una bola negra. Se elige una urna al azar y se extrae una primera bola de la misma, que resulta ser blanca. Se extrae a continuación una segunda bola de la misma urna. ¿Cuál es la probabilidad de que las dos bolas sean blancas?. [Joseph Bertrand, 1822-1900]

SOLUCIÓN. En contra de lo que se podría responder ( sin un detenida reflexión ), la probabilidad pedida no es igual a $1/2$ sino a $2/3$. Vamos a justificarlo.
Denotemos por $B_1$ al suceso obtener bola blanca en la primera extracción y $B_2$ al suceso obtener bola blanca en la segunda extracción. Denominaremos $U_1$, $U_2$ y $U_3$ a los sucesos, elegir la urnas respectivas. Entonces, la probabilidad pedida se escribirá
$$P(B_2|B_1)=\dfrac{P(B_2 \cap B_1)}{P(B_1)} \quad \quad (1)$$ Notemos que $P(B_2 \cap B_1)=P(U_1)=\dfrac{1}{3}$ puesto que obtener dos bolas blancas de la misma urna sólo puede ser posible si se ha elegido la urna $U_1$.

Por otra parte,
$P(B_1)=P(B_1|U_1)\cdot P(U_1)+P(B_1|U_2)\cdot P(U_2)+P(B_1|U_3)\cdot P(U_3)$
  $=1\cdot \dfrac{1}{3}+0\cdot \dfrac{1}{3}+\dfrac{1}{2}\cdot \dfrac{1}{3}=\dfrac{1}{2}$

Por consiguiente, sustituyendo en (1) lo calculado, llegamos a $$P(B_2|B_1)=\dfrac{1/3}{1/2}=\dfrac{2}{3}$$
$\square$