ENUNCIADO. Una urna $U_1$ contiene dos bolas blancas; otra urna $U_2$ contiene dos bolas negras; y una tercera urna $U_3$ contiene una bola blanca y una bola negra. Se elige una urna al azar y se extrae una primera bola de la misma, que resulta ser blanca. Se extrae a continuación una segunda bola de la misma urna. ¿Cuál es la probabilidad de que las dos bolas sean blancas?. [Joseph Bertrand, 1822-1900]
SOLUCIÓN. En contra de lo que se podría responder ( sin un detenida reflexión ), la probabilidad pedida no es igual a $1/2$ sino a $2/3$. Vamos a justificarlo.
Denotemos por $B_1$ al suceso obtener bola blanca en la primera extracción y $B_2$ al suceso obtener bola blanca en la segunda extracción. Denominaremos $U_1$, $U_2$ y $U_3$ a los sucesos, elegir la urnas respectivas. Entonces, la probabilidad pedida se escribirá
$$P(B_2|B_1)=\dfrac{P(B_2 \cap B_1)}{P(B_1)} \quad \quad (1)$$ Notemos que $P(B_2 \cap B_1)=P(U_1)=\dfrac{1}{3}$ puesto que obtener dos bolas blancas de la misma urna sólo puede ser posible si se ha elegido la urna $U_1$.
Por otra parte,
$P(B_1)=P(B_1|U_1)\cdot P(U_1)+P(B_1|U_2)\cdot P(U_2)+P(B_1|U_3)\cdot P(U_3)$
  $=1\cdot \dfrac{1}{3}+0\cdot \dfrac{1}{3}+\dfrac{1}{2}\cdot \dfrac{1}{3}=\dfrac{1}{2}$
Por consiguiente, sustituyendo en (1) lo calculado, llegamos a $$P(B_2|B_1)=\dfrac{1/3}{1/2}=\dfrac{2}{3}$$
$\square$
No hay comentarios:
Publicar un comentario