Mostrando entradas con la etiqueta identidad de Bézout. Mostrar todas las entradas
Mostrando entradas con la etiqueta identidad de Bézout. Mostrar todas las entradas

jueves, 25 de agosto de 2022

La identidad de Bézout

El lema de Bézout

Un resultado básico relacionado con el máximo común divisor de dos números (enteros), distintos de cero, $a,b$ —y lo notaremos de la forma $(a,b)$—, es la denominada identidad de Bezout (lema de Bezout), que dice así:

  Sea $\mathbb{Z} \ni d=(a,b)$, entonces existen dos números enteros $x,y$, no necesariamente únicos, tales que $d=ax+by \quad \quad (1)$.

Ejemplo. Consideremos los números enteros $2$ y $4$. El máximo común divisor de estos dos números es $d=2$, luego, según el lema de Bézout, existen (infinitas) parejas de números $x$ e $y$, tales que $2=2x+4y$. Nos proponemos encontrar cómo son estas infinitas parejas de números $x,y$.

En un caso general, consideremos dos soluciones particulares $x_1,y_1$ y $x_2,y_2$ de la ecuación $d=ax+by$, y que por tanto se sastisfaga $d=a\,x_1+b\,y_1$ y $d=a\,x_2+b\,y_2$. Entonces, como la estructura algebraica que liga los otros infinitos pares de valores es lineal, estas parejas de números enteros están alineadas en una recta cuyas ecuaciones paramétricas son $\left\{\begin{matrix}x-x_1 = \lambda\,(x_2-x_1)\\y-y_1=\lambda\,(y_2-y_1)\end{matrix}\right.\,; \lambda\in \mathbb{Z}$, o, dicho de otro modo, la solución general vendrá dada por $$\left\{\begin{matrix}x=x_1+ \lambda\,(x_2-x_1)\\y=y_1+\lambda\,(y_2-y_1)\end{matrix}\right.\,; \lambda\in \mathbb{Z}\quad \quad (2)$$ donde $x_2-x_1$ e $y_2-y_1$ son, desde luego, números enteros.

Se puede comprobar sin dificultad que, para toda solución particular$x_p,y_p$ de (1), entonces $x_p+kb$ e $y_p-ka$, para cualquier $k\in \mathbb{R}$, también constituye otra solución particular de la misma ecuación; en efecto $a\,(x_p+kb)+b\,(y_p-ka) = a\,x_p+kab+b\,y_p-kab=a\,x_p+b\,y_p$, y, por tanto, $a\,(x_p+kb)+b\,(y_p-ka)=d$. Entonces, podemos escoger los números enteros $x_2-x_1$ e $y_2-y_1$ de los segundos términos de los respectivos segundos miembros de (2) de la forma $x_2-x_1:=\dfrac{b}{d}$ e $y_2-y_1:=-\dfrac{a}{d}$, habida cuenta de que $\dfrac{b}{d} \in \mathbb{Z}$ y $\dfrac{a}{d}\in \mathbb{Z}$ por ser $d=(a,b)$. Así las cosas, podemos escribir las ecuaciones paramétricas (2) de la forma: $$\left\{\begin{matrix} x=x_1+\lambda\,\dfrac{b}{d} \\y=y_1-\lambda\,\dfrac{a}{d} \end{matrix}\right.\,;\lambda\in \mathbb{Z} $$

Resolvamos ahora el ejemplo concreto que nos hemos planteado. Fácilmente, vemos que una solución particular es $x_1=-1$, $y_1=1$ —en efecto, comprobamos que para estos valores de $x$ e $y$ se satisface (1): $2=2\cdot (-1)+4\cdot 1$—, con lo cual, y según lo que hemos razonado arriba, se tiene que $$\left\{\begin{matrix}x=-1+\dfrac{4}{2}\,\lambda\\y=1-\dfrac{2}{2}\,\lambda\end{matrix}\right.\,; \lambda \in \mathbb{Z}$$ esto es $$\left\{\begin{matrix}x=-1+2\,\lambda\\y=1-\lambda\end{matrix}\right.\,; \lambda \in \mathbb{Z}$$ Podemos pues encontrar los infinitos pares de valores $x$ e $y$ que son solución de (1) asignando valores arbitraios al parámetro entero $\lambda$. Así, para $\lambda=0$ se obtiene la solución particular de la que hemos partido: $x=-1$ e $y=1$; para $\lambda=1$, $x=1$ e $y=0$; para $\lambda=2$, $x=3$ e $y=-1$; para $\lambda=-1$, $x=-3$ e $y=2$; para $\lambda=-2$, $x=-5$ e $y=3$, etcétera.

Ecuaciones diofánticas lineales

Una utilidad muy importante de la identidad de Bézout es la de formar parte del proceso de resolución de una ecuación diofántica lineal, $cx+dy=k$, con $c,d,k\in \mathbb{Z}$, para encontrar la solución general, a partir de una solución particular, se procede de una forma muy parecida a la que estamos empleando para encontrar las parejas de valores $x,y$ de la igualdad de Bézout, y lo expongo en este otro artículo (de este mismo cuaderno), mediante un ejemplo práctico.$\diamond$

martes, 4 de mayo de 2021

Introducción a la resolución de ecuaciones diofánticas

Antes de exponer la solución del ejercicio que resolveremos como ejemplo, vamos a decir algunas cosas sobre las ecuaciones con números enteros; en concreto, las que toman la forma $ax+by=c$ (que son las más sencillas), y que llamamos ecuaciones diofánticas lineales. Los coeficientes $a,b,c \in \mathbb{Z}$ vienen dados; y, de tener solución la ecuación, las incógnitas $x$ e $y$, que debemos determinar deben ser, también, números enteros.

Algo de teoría:
Veamos lo que nos dice la teoría: Una ecuación diofántica lineal del tipo $ax+by=c$ tiene solución si y sólo si $d\overset{.}{=}\text{m.c.d.}(a,b)$ es divisor del término independiente $c$, lo cual anotamos de la forma abreviada $d|c$; y, teniendo solución dicha ecuación, se demuestra que hay infinitos pares de valores $(x,y)$ que satisfacen dicha ecuación. Encontramos las infinitas soluciones ( solución general ) encontrando, primero, una solución particular $(x_1,y_1)$, y, a continuación, la solución general, que es de la forma

$$\left\{\begin{matrix}
x=x_1+\lambda\,\dfrac{b}{d} & \\
\\
y=y_1-\lambda\,\dfrac{a}{d} & \\
\end{matrix}\right. \forall \lambda \in \mathbb{Z}$$

Vamos, ahora, a exponer un ejemplo.

ENUNCIADO:
Sea la ecuación diofántica lineal $6x+50y=108$. ¿ Tiene solución ? En caso afirmativo, ¿ cómo son los infinitos pares de valores enteros $(x,y)$ ?

SOLUCIÓN:
Observemos que $a=6$, $b=50$ y $c=108$. Como el máximo común divisor de $a$ y $b$, $d:=\text{m.c.d.}(6,50)=2$, es divisor del término independiente $c=108$, esto es $2 | 108$, podemos afirmar que la ecuación tiene solución en $\mathbb{Z}$ y que ésta consta de infinitos pares de números enteros $(x,y)$, que vamos a ver cómo son a continuación.

Encontremos, para empezar, una solución particular de la ecuación dada. Para ello, determinaremos primero una solución particular de la ecuación $ax+by=d$ (identidad de Bézout) y, partiendo de ésta, encontraremos la solución general a una ecuación diofántica lineal.

La identidad de Bézout, $ax+by=d$ es, en el caso que nos ocupa, $6x+50y=2$. Y vemos fácilmente que, $-8$ y $1$ son dos números enteros que cumplen dicha igualdad; en efecto, $6(-8)+50\cdot 1 = 2$   (1). Y, como el término independiente, $108$, de la ecuación pedida se obtiene multiplicando el término independiente de la identidad de Bézout ( que es $2$ ) por $108/2=54$, mutiplicaremos pues ambos miembros de (1) por $54$ para obtener $$6\cdot (-8)\cdot 54+50\cdot 1 \cdot 54 = 2 \cdot 54$$ con lo cual $$6 \cdot \underset{x_1}{\underbrace{\left((-8)\cdot 54\right)}}+50 \cdot \underset{y_1}{\underbrace{\left( 1 \cdot 54 \right)}}= 108$$ es decir $$6 \cdot \underset{x_1}{\underbrace{(-432)}}+50 \cdot \underset{y_1}{\underbrace{54}}= 108$$ luego una solución particular es $$x_1=-432\,,\,y_1=54$$ Así pues, finalmente, construyendo la solución general, llegamos a $$\left\{\begin{matrix}
x=-432+\lambda\,\dfrac{50}{2} & \\
\\
y=54-\lambda\,\dfrac{6}{2} & \\
\end{matrix}\right. \forall \lambda \in \mathbb{Z}$$
es decir
$$\left\{\begin{matrix}
x=-432+25\,\lambda \\
\\
y=54-3\,\lambda \\
\end{matrix}\right. \quad \quad \forall \lambda \in \mathbb{Z}$$

Ahora, dando valores (enteros) arbitrarios al parámetro $\lambda$ podemos encontrar cualesquiera de los pares de números enteros $(x,y)$ - hay infinitos - que constituyen la solución general; así, por ejemplo, para $\lambda = 4$, encontramos $(-332,42)$, etcetera.


Referencias:
  [1] BUJALANCE, E.; et. al., Elementos de Matemática Discreta, Sanz y Torres, Madrid, 2005 ( tercera edición )
  [2] PARSONS, P.; DIXON, G.et. al., Matemáticas en segundos, Librero, Madrid, 2020 ( pp. 42-43 )
  [3] Wikipedia, https://es.wikipedia.org/wiki/Ecuación_diofántica

$\square$