Mostrando entradas con la etiqueta espacio vectorial. Mostrar todas las entradas
Mostrando entradas con la etiqueta espacio vectorial. Mostrar todas las entradas

jueves, 14 de septiembre de 2023

Ejercicios sobre bases de un espacio vectorial finito. Manejo de sumatorios

Se consideran dos bases $\mathcal{B}=\{\mathbf{u_1,u_2,\ldots,u_n}\}$ (a diferencia de los escalares, representamos los vectores en letra negrita) y $\mathcal{\overset{\sim}{B}}=\{\mathbf{v_1,v_2,\ldots,v_n}\}$ de un espacio vectorial $E$ de dimensión $n\gt 2$, tales que $\displaystyle \mathbf{v_j}=\sum_{i=1}^{n}\,a_{ij}\,\mathbf{u_i}\,\forall\,j=1,\ldots,n$ y $\displaystyle \mathbf{u_i}=\sum_{j=1}^{n}\,b_{ij}\,\mathbf{v_i}\,\forall\,i=1,\ldots,n$. A modo de ejercicio, vamos a demostrar que $\displaystyle \sum_{k=1}^{n} a_{ik}\,b_{kj}=\delta_{ij}$ (función delta de Kronecker)

Nota: Recordemos que la función delta de Kronecker se define de la forma $\mathbb{Z}^+\times \mathbb{Z}^+ \rightarrow \{0,1\} \mapsto \delta_{ij}=\left\{\begin{matrix}1 \;\;\text{si}\;\; i=j \\ 0 \;\;\text{si}\;\; i \neq j\end{matrix}\right.$

Sea un vector $\mathbf{u_j}$ cualquiera de la base $\mathcal{B}$. Entonces, $\displaystyle \mathbf{u_j}=\sum_{i=1}^{n}\,\delta_{ij}\,\mathbf{u_i}=\sum_{k=1}^{n}\,b_{kj}\,\mathbf{v_k}=\sum_{k=1}^{n}\,b_{kj}\,\sum_{i=1}^{n}a_{ik}\,\mathbf{u_i}=\sum_{i=1}^{n}\,\left( \sum_{k=1}^{n} a_{ik} \, b_{kj}\right) \,\mathbf{u_i} \Leftrightarrow \delta_{ij}=\sum_{k=1}^{n} a_{ik} \, b_{kj}.\diamond$

-oOo-

Referencias

  [1] S. Lipschutz, Geometría diferencial, McGraw-Hill (serie Shaum), México D.F., 1991.

jueves, 3 de agosto de 2023

Espacio vectorial cociente inducido por una relación de equivalencia

Relación de equivalencia:
Dado un conjunto $E$, se define en él una relación binaria de equivalencia $\mathcal{E}$, cumpliendo por tanto las propiedades: reflexiva, simétrica y transitiva ). Pues bien, dicha relación de equivalencia determina una partición de $E$, cuyas partes se llaman clases de equivalencia y, recíprocamente, cualquier partición de $E$ establece una relación de equivalencia en $E$.

Dada $\mathcal{E}$ ( una r. de e. en $E$ ), se llaman clase de equivalencia de un elemento $w \in E$, y se designa por $[w]$, al cojunto de elementos que se relacionan con $w$ mediante $\mathcal{E}$, és decir
    $[w]=\{x \in E \, | \, x \,\mathcal{E}\, w \}$

Las clases de equivalencia cumplen las siguientes propiedades:
  a) Dados $x,y \in E$, $x \, \mathcal{E} \, \text{y} \, \Leftrightarrow [x]=[y]$
  b) Dados $x,y \in E$, $x \; \text{no es equivalente a}\; y \Leftrightarrow [x]\cap [y] = \emptyset$
  c) $\displaystyle \cup_{x \in E} [x]=E$

Relación de equivalencia asociada a una aplicación entre dos conjuntos:
Dada una aplicación   $f: A\rightarrow B$, se define la relación binaria tener la misma imagen por la aplicación ( que es de equivalencia ). Esta relación de equivalencia $\mathcal{E}$ se denomina equivalencia asociada a la aplicación y, por tanto, podemos afirmar que dados $x,y \in A$, $x \, \mathcal{E}\, y \Leftrightarrow f(x)=f(y)$.

    Teorema:   Dada una aplicación   $f: E\rightarrow E^{'}$ y la relación de equivalencia asociada, se demuestra que la aplicación $f$ puede descomponerse en tres aplicaciones:
        $f=i \circ b \circ e$
de tal forma que
          $e:E \rightarrow E/\mathcal{E}$   ($e$ es exhaustiva)
          $b: E/\mathcal{E} \rightarrow Im(E)$   ( tal que $b([x])=f(x)$ es biyectiva )
          $i: Im(E) \rightarrow E^{'}$   ( tal que $i\big(f(x)\big)=f(x)$ es inyectiva )
[esquema]


Espacio vectorial cociente:

Sea $(E,+,\cdot)$ un e.v. sobre un cuerpo conmutativo $K$, y sea $\mathcal{E}$ una relación de equivalencia definida en $E$ que sea compatible con la estructura de e.v. sobre $k$.

Por ser $(E,+)$ grupo abeliano, dicha relación de equivalencia debe ser del tipo
$x \, \mathcal{E} \, y \Leftrightarrow x-y \in F$, para todo par $x,y \in E$, donde $F$ es un subgrupo del grupo abeliano $(E,+)$. Siendo, además, $\mathcal{E}$ también compatible con la operación externa producto por escalares, se tiene que $x \, \mathcal{E} \, y \Leftrightarrow \lambda \cdot x \,\, \mathcal{E} \,\, \lambda \cdot y \; \;\forall \lambda \in K$. Entonces, como $\lambda \cdot x - \lambda \cdot y \in F \Leftrightarrow \lambda \cdot (x-y) \in F$, $F$ es un e.v. de $E$.
[Nota: cualquier $z \in F$ puede considerarse como la diferencia de dos vectores $x$ e $y$ equivalentes, ya que elegido un $x \in E$ arbitrario, basta tomar $y=x-z$ ]

Se comprueba que, dado $(E,+,\cdot)$ y dado $F \subset E$, un subespacio vectorial de $E$, la estructura $(E/\mathcal{E},+,\cdot)$ es un e.v. que se denomina espacio vectorial cociente y ser representa por $(E/F,+,\cdot)$ debido a que la relación de equivalencia $\mathcal{E}$ distingue al subespacio vectorial $F$.


miércoles, 28 de abril de 2021

Relaciones de equivalencia. Espacio vectorial cociente

Relación de equivalencia:
Dado un conjunto $E$, se define en él una relación binaria de equivalencia $\mathcal{E}$, cumpliendo por tanto las propiedades: reflexiva, simétrica y transitiva ). Pues bien, dicha relación de equivalencia determina una partición de $E$, cuyas partes se llaman clases de equivalencia y, recíprocamente, cualquier partición de $E$ establece una relación de equivalencia en $E$.

Dada $\mathcal{E}$ ( una r. de e. en $E$ ), se llaman clase de equivalencia de un elemento $w \in E$, y se designa por $[w]$, al cojunto de elementos que se relacionan con $w$ mediante $\mathcal{E}$, és decir
    $[w]=\{x \in E \, | \, x \,\mathcal{E}\, w \}$

Las clases de equivalencia cumplen las siguientes propiedades:
  a) Dados $x,y \in E$, $x \, \mathcal{E} \, \text{y} \, \Leftrightarrow [x]=[y]$
  b) Dados $x,y \in E$, $x \; \text{no es equivalente a}\; y \Leftrightarrow [x]\cap [y] = \emptyset$
  c) $\displaystyle \cup_{x \in E} [x]=E$

Relación de equivalencia asociada a una aplicación entre dos conjuntos:
Dada una aplicación   $f: A\rightarrow B$, se define la relación binaria tener la misma imagen por la aplicación ( que es de equivalencia ). Esta relación de equivalencia $\mathcal{E}$ se denomina equivalencia asociada a la aplicación y, por tanto, podemos afirmar que dados $x,y \in A$, $x \, \mathcal{E}\, y \Leftrightarrow f(x)=f(y)$.

    Teorema:   Dada una aplicación   $f: E\rightarrow E^{'}$ y la relación de equivalencia asociada, se demuestra que la aplicación $f$ puede descomponerse en tres aplicaciones:
        $f=i \circ b \circ e$
de tal forma que
          $e:E \rightarrow E/\mathcal{E}$   ($e$ es exhaustiva)
          $b: E/\mathcal{E} \rightarrow Im(E)$   ( tal que $b([x])=f(x)$ es biyectiva )
          $i: Im(E) \rightarrow E^{'}$   ( tal que $i\big(f(x)\big)=f(x)$ es inyectiva )
[esquema]


Espacio vectorial cociente:

Sea $(E,+,\cdot)$ un e.v. sobre un cuerpo conmutativo $K$, y sea $\mathcal{E}$ una relación de equivalencia definida en $E$ que sea compatible con la estructura de e.v. sobre $k$.

Por ser $(E,+)$ grupo abeliano, dicha relación de equivalencia debe ser del tipo
$x \, \mathcal{E} \, y \Leftrightarrow x-y \in F$, para todo par $x,y \in E$, donde $F$ es un subgrupo del grupo abeliano $(E,+)$. Siendo, además, $\mathcal{E}$ también compatible con la operación externa producto por escalares, se tiene que $x \, \mathcal{E} \, y \Leftrightarrow \lambda \cdot x \,\, \mathcal{E} \,\, \lambda \cdot y \; \;\forall \lambda \in K$. Entonces, como $\lambda \cdot x - \lambda \cdot y \in F \Leftrightarrow \lambda \cdot (x-y) \in F$, $F$ es un e.v. de $E$.
[Nota: cualquier $z \in F$ puede considerarse como la diferencia de dos vectores $x$ e $y$ equivalentes, ya que elegido un $x \in E$ arbitrario, basta tomar $y=x-z$ ]

Se comprueba que, dado $(E,+,\cdot)$ y dado $F \subset E$, un subespacio vectorial de $E$, la estructura $(E/\mathcal{E},+,\cdot)$ es un e.v. que se denomina espacio vectorial cociente y ser representa por $(E/F,+,\cdot)$ debido a que la relación de equivalencia $\mathcal{E}$ distingue al subespacio vectorial $F$.