martes, 9 de abril de 2024

Divisibilidad de polinomios de variable compleja

En este ejercicio voy a demostrar que el polinomio $P(x)=x^n\,\sin\,\alpha-\lambda^{n-1}\,x\,\sin\,(n\alpha)+\lambda^n\,\sin\,((n-1)\,\alpha)$ es divisible por el polinomio $Q(x)=x^2-2\,\lambda\,x\cos\,\alpha+\lambda^2$

Voy a empezar factorizando el polinomio $Q(x)$, y, para ello, tengo que calcular sus ráices: $Q(x)=0 \Leftrightarrow x=\dfrac{-(-2\,\lambda\,\cos\,\lambda) \pm \sqrt{4\,(-\lambda\,\cos\,\alpha)^2-4\,\lambda^2}}{2}=\lambda\,(\cos\,\alpha \pm i\,\sin\,\alpha)$; por tanto, $Q(x)=(x-r_1)\,(x-r_2)$, donde $r_1=\lambda\,(\cos\,\alpha+i\,\sin\,\alpha)$ y $r_1=\lambda\,(\cos\,\alpha-i\,\sin\,\alpha)$

Entonces, para que $P(x)$ sea divisible (se un polinomio múltiplo de) $Q(x)$ es necesario que lo sea también por sus polinomios factores, $x-r_1$ y $x-r_2$; y, por el teorema del resto, deberá cumplirse que $P(r_1)=P(r_2)=0$. Y, en efecto, así es:

$P(r_1)=(\lambda\,(\cos\,\alpha+i\,\sin\,\alpha)^n\,\sin\,\alpha-\lambda^{n-1}\,(\lambda\,(\cos\,\alpha+i\,\sin\,\alpha))\,\sin\,(n\alpha)+\lambda^n\,\sin\,((n-1)\,\alpha)$
  $=\lambda^n\,(\cos\,(n\alpha)+i\,\sin(n\alpha))\sin\,\alpha-\lambda^{n-1}\,(\lambda\,(\cos\,\alpha+i\,\sin\,\alpha))\,\sin\,(n\alpha)+\lambda^n\,\sin\,((n-1)\,\alpha)$
    $\because \text{por la fórmula de Moivre aplicada al primer sumando}$
    $=\lambda^n\,\left(\cos\,(n\alpha)\,\sin\,\alpha-\cos\,\alpha\,\sin\,(n\alpha)\right)+\lambda^n\,\sin\,((n-1)\,\alpha)$
      $=\lambda^n\,\left(\cos\,(n\alpha)\,\sin\,\alpha-\cos\,\alpha\,\sin\,(n\alpha)\right)+\lambda^n\,\sin\,(n\alpha-\alpha)$
        $=\lambda^n\,\left(\cos\,(n\alpha)\,\sin\,\alpha-\cos\,\alpha\,\sin\,(n\alpha)\right)+\lambda^n\,\left( \sin\,(n\alpha)\,\cos\,\alpha - \cos\,(n\alpha)\,\sin\,\alpha \right)$
          $=\lambda^n\, \left( \cos\,(n\alpha)\,\sin\,\alpha-\cos\,\alpha\,\sin\,(n\alpha) + \sin\,(n\alpha)\,\cos\,\alpha - \cos\,(n\alpha)\,\sin\,\alpha \right)$
            $=\lambda^n\, \left( (\cos\,(n\alpha)\,\sin\,\alpha - \cos\,(n\alpha)\,\sin\,\alpha) + (\cos\,\alpha\, \sin\,(n\alpha) -\cos\,\alpha\,\sin\,(n\alpha)) \right)$
              $=\lambda^n\, \left( 0 + 0 \right)$
                $=0$

$P(r_2)=(\lambda\,(\cos\,\alpha-i\,\sin\,\alpha)^n\,\sin\,\alpha-\lambda^{n-1}\,(\lambda\,(\cos\,\alpha-i\,\sin\,\alpha))\,\sin\,(n\alpha)+\lambda^n\,\sin\,((n-1)\,\alpha)$
  $=\lambda^n\,(\cos\,(n\alpha)-i\,\sin(n\alpha))\sin\,\alpha-\lambda^{n-1}\,(\lambda\,(\cos\,\alpha-i\,\sin\,\alpha))\,\sin\,(n\alpha)+\lambda^n\,\sin\,((n-1)\,\alpha)$
    $\because \text{por la fórmula de Moivre aplicada al primer sumando}$
    $=\lambda^n\,\left(\cos\,(n\alpha)\,\sin\,\alpha-\cos\,\alpha\,\sin\,(n\alpha)\right)+\lambda^n\,\sin\,((n-1)\,\alpha)$
      $=\lambda^n\,\left(\cos\,(n\alpha)\,\sin\,\alpha-\cos\,\alpha\,\sin\,(n\alpha)\right)+\lambda^n\,\sin\,(n\alpha-\alpha)$
        $=\lambda^n\,\left(\cos\,(n\alpha)\,\sin\,\alpha-\cos\,\alpha\,\sin\,(n\alpha)\right)+\lambda^n\,\left( \sin\,(n\alpha)\,\cos\,\alpha - \cos\,(n\alpha)\,\sin\,\alpha \right)$
          $=\lambda^n\, \left( \cos\,(n\alpha)\,\sin\,\alpha-\cos\,\alpha\,\sin\,(n\alpha) + \sin\,(n\alpha)\,\cos\,\alpha - \cos\,(n\alpha)\,\sin\,\alpha \right)$
            $=\lambda^n\, \left( (\cos\,(n\alpha)\,\sin\,\alpha - \cos\,(n\alpha)\,\sin\,\alpha) + (\cos\,\alpha\, \sin\,(n\alpha) -\cos\,\alpha\,\sin\,(n\alpha)) \right)$
              $=\lambda^n\, \left( 0 + 0 \right)$
                $=0$
$\diamond$

No hay comentarios:

Publicar un comentario