Nos proponemos sumar los $50$ primeros términos de las siguientes secuencias de números naturales:
  a) $1,2,3,4,5,\overset{\underbrace{50}}{\ldots},50$
  b) $1,4,9,16,25,\overset{\underbrace{50}}{\ldots},2500$
  c) $1,8,27,64,125,\overset{\underbrace{50}}{\ldots},125000$
Observemos que estas sucesiones se forman de la siguiente manera:
  a) $1,2,3,4,5,\ldots$ es la sucesión de los los números naturales $a_n=n$, y siendo finita en nuestro caso la sucesión, con $n=1,2,3,\ldots,50$, es muy fácil demostrar que, teniendo en cuenta que los términos forman una sucesión aritmética de diferencia igual a $1$, la suma de los $n$ primeros términos de la sucesión de los númros naturales es $1+2+\ldots+n=\dfrac{n\,(n+1)}{2}$. Así pues, $1+2+3+4+5,\overset{\underbrace{50}}{\ldots},50=\dfrac{50\cdot (50+1)}{2}=1\,275$
  b) $1^2,2^2,3^2,4^2,5^2,\ldots,50^2$ es la sucesión $b_n=n^2$, siendo finita la sucesión (como en el caso anterior), con $n=1,2,3,\ldots,50$,con $n=1,2,3,\ldots,50$, esto es la sucesión de los cuadrados de los $50$ primeros números naturales. Por inducción se demuestra fácilmente que la suma de los $n$ primeros términos de dicha sucesión es $1^2+2^2+\ldots+n^2=\dfrac{n\,(n+1)\,(2n+1)}{6}$. Por consiguiente, $1+4+9+16+25+\overset{\underbrace{50}}{\ldots}+2500=1^2+2^2+3^2+4^2+5^2+\overset{\underbrace{50}}{\ldots}+50^2=\dfrac{50\cdot (50+1)\cdot (2\cdot 50+1)}{6}=42\,925$
  c) $1^3,2^3,3^3,4^3,5^3,\ldots,50^3$, es la sucesión finita $c_n=n^3$ con $n=1,2,3,\ldots,50$, esto es la sucesión de los cubos de los $50$ primeros números naturales. Se demuestra fácilmente —también por inducción— que la suma de los $n$ primeros términos de esta sucesión es $1^3+2^3+\ldots+n^3=\dfrac{n^2\,(n+1)^2}{4}$. Por tanto, $1+8+27+64+125+\overset{\underbrace{50}}{\ldots}+125000=1^3+2^3+3^3+4^3+5^3+\overset{\underbrace{50}}{\ldots}+50^3=\dfrac{50^2\cdot (50+1)^2}{4}=1\,625\,625$
$\diamond$
No hay comentarios:
Publicar un comentario