lunes, 22 de agosto de 2022

La función indicatriz de Euler, el teorema de Euler-Fermat y el pequeño teorema de Fermat

La función indicatriz de Euler

La función indicatriz de Euler es muy importante en teoría de números. La función indicatriz de Euler de un número entero positivo $m$, y se escribe $\varphi(m)$, proporciona el número de números enteros positivos, menores o iguales que $m$, que son coprimos con $m$. En el lenguaje matemático: $\varphi(m):=\text{cardinal}\left(\{n\in \mathbb{N}: (1\le n \le m) \wedge \text{m.c.d.}(m,n)=1\}\right)$. Se demuestra que dicha cantidad es igual a $\displaystyle \varphi(m):=m\,\prod_{p_i|m}\,\left(1-\dfrac{1}{p_i}\right)$; siendo $\{p_i\}$, el conjunto de números primos que dividen a $m$. Así, por ejemplo $\varphi(9)=9\cdot \left(1-\dfrac{1}{3}\right)=9\cdot \dfrac{2}{3}=6$; en efecto, el conjunto de números naturales que cumplen la condición requerida es $\{1,2,4,5,7,8\}$, y, claro está que $\text{cardinal}\left(\{1,2,4,5,7,8\}\right)=6$

El teorema de Euler-Fermat

La función indicatriz de Euler-Fermat aparece por ejemplo en el teorema de Euler-Fermat: Si $a,m \in \mathbb{N}$ son primos relativos, esto es, $\text{m.c.d.}(a,m)=1)$, entonces $a$ es congruente con $1$ módulo $m$: $a^{\varphi(m)} \equiv 1 (\text{mod}\, m)$, y es de gran importancia en el cálculo de congruencias.

El pequeño teorema de Fermat

El teorema de Euler-Fermat generaliza el pequeño teorema de Fermat. El pequeño teorema de Fermat dice así: dado un número $p$, primo, y un número entero $a$, siendo $a$ y $p$ coprimos, esto es $\text{m.c.d.}(a,p)=1$, entonces $a^{p-1}\equiv 1 (\text{mod}\, p)$, afirmación que es equivalente a $a^p ≡ a (\text{mod}\, p)$. Por ejemplo, si $p=3$ y $a=4$, se tiene que el residuo de la división euclídea de $a^p=4^{3-1}=16$ entre $3$ es $1$, como debe ser; esto es, el residuo de la división $4^3=64$ entre $3$ es igual a $4$.

-oOo-

Observación. Una consecuencia de este teorema es la siguiente: Como al dividir $a^{p-1}$ entre $p$ se obtiene resto igual a $1$, existe un $k\in \mathbb{Z}$ para el cual $a^{p-1}=k\, p +1$, multiplicando por $a$ en cada miembro de la igualdad, se tiene que $a^{p}= k \,p \,a + a$, luego $a^{p} - a$ es múltiplo de $p$ puesto que $k\,a$ és también un número entero.

Ejemplo. Sea $a=9$ y $p=2$ (primo), siendo $(9,2)=1$ y cumpliéndose así las condiciones suficientes del teorema. Comprabamos, en efecto, que $a^p=9^2=81 \mod 2 = 1$, coincidiendo con $a=9 \mod 2 =1$; y, además, $a^p-a \in (\overset{.}{p})$ pues $81-8=72 \in (\overset{.}{2})$.

$\diamond$

No hay comentarios:

Publicar un comentario