Introduciendo los coeficientes de la matriz $A$ en GNU Octave
-->A=[2,1;5,4]
eco
A =
2. 1.
5. 4.
a) Norma matricial subordinada a la norma vectorial $\left\|\;\right\|_1 \rightarrow \left\|A\right\|_1$=máximo de las sumas de los valores absolutos de los elementos de las columnas de la matriz $A$
-->max(sum(abs(A),'r'))
ans =
7.
o también
-->norm(A,1)
ans =
7.
b) Norma matricial subordinada a la norma vectorial $\left\|\;\right\|_2 \rightarrow \left\|A\right\|_2=\rho(A^t\,A)^{1/2}$
-->norm(A,2)
ans =
6.7678289
Observación:
Los autovalores de $A$ son:
-->spec(A)
ans =
0.5505103
5.4494897
y el máximo de éstos ( el radio espectral, $\rho(A)$ ) es $5,4494897 \neq \left\|A\right\|_2=6.7678289 $
c) Norma matricial subordinada a la norma vectorial $\left\|\;\right\|_2 \rightarrow \left\|A\right\|_{\infty}$=máximo de las sumas de los valores absolutos de los elementos de las filas de la matriz $A$
-->max(sum(abs(A),'c'))
ans =
9.
o también
-->norm(A,'inf')
ans =
9.
d) Norma de Fröbenius es la norma asociada al producto escalar matricial $A:B\overset{def}{=}\text{tr}\,(A^t\,B)$ ), esto es, $\left\|A\right\|_{F}=(A:A)^{1/2}=\left(\text{tr}\,(A^t\,A)\right)^{1/2}$
-->trace(A'*A)^(1/2)
ans =
6.78233
No hay comentarios:
Publicar un comentario