Processing math: 7%

lunes, 26 de abril de 2021

El problema del pastís

Considerem un pastís de forma circular i suposem que tallem una part del pastís en forma de sector circular de tal manera que aquesta representi \displaystyle \frac{1}{k} del total (k>1). Tot seguit, imaginem que tallem un altre sector circular que representi la meitat del primer. I, així successivament infinites vegades (idealització matemàtica). Quin valor ha de tenir k per tal que, al final, tinguem tot el pastís fet a trossos i de tal manera que l'últim tall coincideixi amb el primer ?

Observem que es tracta de fer la suma d'una sèrie geomètrica de raó igual a \displaystyle \frac{1}{2}, el primer terme de la qual és \displaystyle \frac{1}{k} i d'infinits termes, per tant es complirà que la suma dels infinits termes sigui igual a 1, és a dir:
\displaystyle \lim_{n \rightarrow \infty} \Big( \frac{1}{k}\cdot \frac{(\frac{1}{2})^n-1}{\frac{1}{2}-1}\Big)=1 Com que el valor del límit és igual a \displaystyle \frac{2}{k}, tindrem que \displaystyle \frac{2}{k}=1 i, per tant, k=2. Caldrà que comencem, doncs, tallant la meitat del pastís. \square

No hay comentarios:

Publicar un comentario