Enunciat:
Considereu l'espai afí $(\mathbb{R}^3, O, \mathcal{B})$ on:
    $\mathbb{R}^3$ és l'espai vectorial estàndard sobre el cos $\mathbb{R}$
    L'origen de coordenades $O$ és el punt de coordenades $(0,0,0)$
    La base $\mathcal{B}$ escollida de l'espai vectorial $\mathbb{R}^3$ està formada pels vectors
            $\{e_1=1,0,0,e_2=(0,1,0),e_3=(0,0,1)\}$
                ( que es la base estàndard o canònica).
Determineu l'equació implícita (o e. general) del pla que passa pels punts $P(1,0,0)$, $Q(0,1,0)$ i $R(0,0,1)$
  Comentari:   Les projeccions d'aquest pla sobre els plans $Oxy$, $Oxz$ i $Oyz$, són rectes que formen angles de 45º amb els eixos respectius.
Solució:
L'equació implícita del pla
    $A\,x+B\,y+C\,z+D=0$
que passa per tres punts donats
    $P(x_P,y_P,z_P)$, $Q(x_Q,y_Q,z_Q)$ i $R(x_R,y_R,z_R)$
ve donada per
    $\begin{vmatrix} x&y &z &1\\ x_P&y_P &z_P &1 \\ x_Q&y_Q &z_Q &1 \\ x_R&y_R &z_R &1 \end{vmatrix}=0$
que, amb les dades donades, es concreta així
    $\begin{vmatrix} x&y &z &1\\ 1&0 &0 &1 \\ 0&1 &0 &1 \\ 0&0 &1 &1 \end{vmatrix}=0$
Per calcular el determinant d'ordre $4$ desenvoluparem pels adjunts de la primera columna
    $\begin{vmatrix} x&y &z &1\\ 1&0 &0 &1 \\ 0&1 &0 &1 \\ 0&0 &1 &1 \end{vmatrix}=x\,\begin{vmatrix} 0&0 &1 \\ 1&0 &1 \\ 0&1 &1 \end{vmatrix}-\begin{vmatrix} y&z &1 \\ 1&0 &1 \\ 0&1 &1 \end{vmatrix}=x-(1-y-z)$
                                                                              $=x+y+z-1$
Per tant el pla $\pi_{PQZ}$ ve descrit per l'equació (e. general del pla):
    $\pi_{PQZ}:\;\; x+y+z-1=0$
Nota:   Observem que si fem les projeccions del pla sobre els tres plans $Oxy$ ( fent $z=0$ ), $Oyz$ ( fent $x=0$ ) i $Oxz$ ( fent $y=0$ ) obtenim, respectivament, les rectes:
    $x+y=1$, és a dir, la recta $y=-x+1$ ( en el pla $Oxy$ )
    $z+y=1$, és a dir, la recta $z=-y+1$ ( en el pla $Oyz$ )
    $x+z=1$, és a dir, la recta $z=-x+1$ ( en el pla $Oxz$ )
$\square$
No hay comentarios:
Publicar un comentario