Exemple 1:
Demostreu, per inducció, la següent propietat:
    $1^2+2^2+3^2+\ldots+n^2=\dfrac{1}{6}\,n\,(n+1)\,(2\,n+1) \quad \quad \text{on} \quad n \in \mathbb{N}$
Solució:
Seguint els tres passos del mètode de demostració per inducció tenim. Aquests passos són els següents:
  i) És evident que la propietat és certa per a $n=1$, és a dir, es compleix $\mathcal{P}_1$
  ii) Suposem, ara, que la propietat $\mathcal{P}_n$ és certa ( suposem que és certa la proposició donada, és a dir, la igualtat donada a l'enunciat )
  iii) Provarem, a continuació, que la propietat també és certa per a $n+1$, és a dir, provarem que es verifica $\mathcal{P}_{n+1}$. Fet això, d'acord amb el principi dit d'inducció, quedarà demostrada la proposició $\mathcal{P}$ per a qualsevol valor de $n$. Partint, doncs, de l'expressió del primer membre de la igualtat donada (   $\mathcal{P}_n$   ) , sumem el terme $(n+1)^2$ al primer membre (sumem el quadrat del nombre consecutiu al darrer terme), obtenint
    $\big(1^2+2^2+3^2+\ldots+n^2\big)+(n+1)^2$
que, segons $\mathcal{P}_n$, és igual a
    $\dfrac{1}{6}\,n\,(n+1)\,(2\,n+1)+(n+1)^2$
expressió que és igual a
    $\dfrac{1}{6}\,(n+1)\,\big(2\,n^2+7\,n+6\big)$
i que, factoritzada, queda
    $\dfrac{1}{6}\,(n+1)\,(n+2)(2\,n+3)$
per tant es reprodueix la mateixa estructura de l'expressió del 2n membre per a $n+1$; en efecte, per veure-ho ben clar, tan sols cal substituir $n$ per $n+1$ a l'expressió del segon membre, verificant la reproducció de l'estructura de l'expressió:
    $\dfrac{1}{6}\,(n+1)\,\big((n+1)+1\big)\,\big(2\,(n+1)+1\big)$
Llavors, queda provada $\mathcal{P}$.
$\diamond$
-oOo-
Exemple 2:
Demostreu, per inducció, la següent propietat:
    $2+4+6+\ldots+2n=n\,(n+1)$     ( $n \in \mathbb{N}$ ).
Solució:
Seguint els tres passos del mètode de demostració per inducció tenim. Aquests passos són els següents:
  i) És evident que la propietat és certa per a $n=1$, és a dir, es compleix $\mathcal{P}_1$
  ii) Suposem, ara, que la propietat $\mathcal{P}_n$ és certa ( suposem que és certa la proposició donada, és a dir, la igualtat donada a l'enunciat )
  iii) Provarem, a continuació, que la propietat també és certa per a $n+1$, és a dir, provarem que es compleix $\mathcal{P}_{n+1}$. Fet això, d'acord amb el principi dit d'inducció, quedarà demostrada la proposició $\mathcal{P}$ per a qualsevol valor de $n$. Partint, doncs, de l'expressió del primer membre de la igualtat donada (   $\mathcal{P}_n$   ) , sumem el terme $2\,(n+1)$ al primer membre (sumem el nombre parell consecutiu al darrer terme), obtenint
  $\big(2+4+6+\ldots+2n\big)+2\,(n+1)$
que, segons $\mathcal{P}_n$, és igual a $n\,(n+1)+2\,(n+1)$
expressió que és igual a $n^2+3\,n+2$
i, factoritzada, queda
$(n+1)\,(n+2)$
per tant es reprodueix la mateixa estructura de l'expressió del 2n membre per a $n+1$; en efecte, per veure-ho ben clar, tan sols cal substituir $n$ per $n+1$ a l'expressió del segon membre, verificant la reproducció de l'estructura de l'expressió. Llavors, queda provada $\mathcal{P}$.
$\diamond$
-oOo-
Exemple 3:
Demostreu, per inducció, la següent propietat:
    $1+4+7+\ldots+(3\,n-2)=\dfrac{1}{2}\,n\,(3\,n-1) \quad \quad \text{on} \quad n \in \mathbb{N}$
Solució:
Seguint els tres passos del mètode de demostració per inducció tenim. Aquests passos són els següents:
  i) És evident que la propietat és certa per a $n=1$, és a dir, es compleix $\mathcal{P}_1$
  ii) Suposem, ara, que la propietat $\mathcal{P}_n$ és certa ( suposem que és certa la proposició donada, és a dir, la igualtat donada a l'enunciat )
  iii) Provarem, a continuació, que la propietat també és certa per a $n+1$, és a dir, provarem que es compleix $\mathcal{P}_{n+1}$. Fet això, d'acord amb el principi dit d'inducció, quedarà demostrada la proposició $\mathcal{P}$ per a qualsevol valor de $n$. Partint, doncs, de l'expressió del primer membre de la igualtat donada (   $\mathcal{P}_n$   ) , sumem el terme $3\,(n+1)-2$ al primer membre (sumem el valor del terme consecutiu de la successió aritmètica de diferència igual a $3$), obtenint
  $\bigg(1+4+7+\ldots+\big(3\,n-2\big)\bigg)+\big((3\,(n+1)-2\big)$
i, segons $\mathcal{P}_n$, és igual a
$\dfrac{1}{2}\,\bigg(\,n\,(3\,n-1)+2\,\big((3\,(n+1)-2\big)\bigg)$
expressió que és igual a
$\dfrac{1}{2}\,\big(3\,n^2+5\,n+2\big)$
i, factoritzada, queda
$\dfrac{1}{2}\,(n+1)\,(3\,n+2)$
on reconeixem la reproducció de l'estructura de la propietat $\mathcal{P}$ per a $n+1$
$\dfrac{1}{2}\,(n+1)\,(3\,(n+1)-1)$
i, doncs, queda provada $\mathcal{P}$.
$\diamond$
-oOo-
Exemple 4:
Demostreu, per inducció, la següent propietat:
    $1+5+9+\ldots+(4\,n-3)=n\,(2\,n-1) \quad \quad \text{on} \quad n \in \mathbb{N}$
Solució:
Seguint els tres passos del mètode de demostració per inducció tenim. Aquests passos són els següents:
  i) És evident que la propietat és certa per a $n=1$, és a dir, es compleix $\mathcal{P}_1$
  ii) Suposem, ara, que la propietat $\mathcal{P}_n$ és certa ( suposem que és certa la proposició donada, és a dir, la igualtat donada a l'enunciat )
  iii) Provarem, a continuació, que la propietat també és certa per a $n+1$, és a dir, provarem que es compleix $\mathcal{P}_{n+1}$. Fet això, d'acord amb el principi dit d'inducció, quedarà demostrada la proposició $\mathcal{P}$ per a qualsevol valor de $n$. Partint, doncs, de l'expressió del primer membre de la igualtat donada (   $\mathcal{P}_n$   ) , sumem el terme $4\,(n-3)+4$ al primer membre (sumem el valor del terme consecutiu de la successió aritmètica de diferència igual a $4$), obtenint
  $\bigg(1+5+9+\ldots+\big(4\,n-3\big)\bigg)+\big((4\,n-3)+4\big)$
i, segons $\mathcal{P}_n$, és igual a
    $n\,(2\,n-1)+\big((4\,n-3)+4\big)$
expressió que és igual a
    $2\,n^2+3\,n+1$
i, factoritzada (nota), queda
    $(n+1)\,(2\,n+1)$
on reconeixem la reproducció de l'estructura de la propietat $\mathcal{P}$ per a $n+1$
    $(n+1)\,\big(2\,(n+1)-1\big)$
i, doncs, queda provada $\mathcal{P}$. Hem acabat.
---------------
Nota:  
Per factoritzar el polinomi $2\,n^2+3\,n+1$ en calculem, primer de tot, les arrels o zeros del polinomi (que són els nombres que l'anul·len) i, per acabar, aplicarem el teorema de factorització.
Resolem, doncs, l'equació $2\,n^2+3\,n+1=0$ per determinar les seves arrels. L'equació és polinòmica de 2n grau, i ja ve expressada en forma completa (o general) $a\,x^2+b\,x+c=0$, amb coeficients: $a=2$, $b=3$ i $c=1$
veiem que el discriminant $\Delta=b^2-4\,a\,c$ que és igual a $3^2-4 \cdot 2 \cdot 1 = 1$, que és un nombre positiu, i, per tant, veiem que hi ha dos nombres reals (diferents) com a solució, que són els següents:
      $\dfrac{-3\pm \sqrt{\Delta}}{2 \cdot 2}=\dfrac{-3\pm 1}{4}$
Obtenim, doncs, les següents arrels del polinomi
    $n_1=-\dfrac{1}{2} \quad \text{i} \quad n_2=-1$
llavors, pel teorema de factorització podem escriure
    $2\,n^2+3\,n+1=2\,\big(n-n_1\big)\,\big(n-n_2\big)$
és a dir
    $2\,n^2+3\,n+1=2\,\big(n-(-\dfrac{1}{2}\big)\,\big(n-(-1)\big)$
        $=2\,\bigg(n+\dfrac{1}{2}\bigg)\,\big(n+1)\big)$
        $=(n+1)\,\big(2\,(n+1)-1\big)$
        $=(n+1)\,\big(2\,n+1\big)$
$\diamond$
-oOo-
Exemple 5:
Demostreu, per inducció, la següent propietat:
    $1^3+2^3+\ldots+n^3=(1+2+\ldots+n)^2 \quad \quad \text{on} \quad n \in \mathbb{N}$
Solució:
Seguint els tres passos del mètode de demostració per inducció tenim. Aquests passos són els següents:
  i) És evident que la propietat és certa per a $n=1$, és a dir, es compleix $\mathcal{P}_1$
  ii) Suposem, ara, que la propietat $\mathcal{P}_n$ és certa (suposem que és certa la proposició donada, és a dir, la igualtat donada a l'enunciat, i que ja sabem que es igual a $\left( \dfrac{n\,(n+1)}{2}\right)^2$ suma dels $n$ termes consecutius de la succesió aritmética elevada al quadrat
  iii) Provarem, a continuació, que la propietat també és certa per a $n+1$, és a dir, provarem que es compleix $\mathcal{P}_{n+1}$. Fet això, d'acord amb el principi dit d'inducció, quedarà demostrada la proposició $\mathcal{P}$ per a qualsevol valor de $n$. Partint, doncs, de l'expressió del primer membre de la igualtat donada (   $\mathcal{P}_n$   ), sumem el terme $(n+1)^3$ als dos membres de la igualtat,
  $(1^3+2^3+\ldots+n^3)+(n+1)^3=\left( \dfrac{n\,(n+1)}{2}\right)^2+(n+1)^3$
i, si desenvolupem el segon membre, veurem que es igual a
    $(n+1)^2\,\left( (n/2)^2 + (n+1)\right)=(n+1)^2\left( n^2+4n+4\right)/2^2=(n+1)^2\,((n+2)/2)^2=((n+1)(n+2)/2)^2$
i, doncs, es compleix $\mathcal{P}_{n+1}$. Per tant, hem acabat.
$\diamond$